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satisfies, as in the previous example, the conditions formulated above which assert the 
instability (which is obvious in the present case) of equilibrium. 
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The case when there is one resonance relation B1 = 2& between the frequencies 

of oscillators was studied in [l. 21. We consider the possible case of a third-order 

resonance in the oscillations in a Hamiltonian system of nonlinearly coupled osc- 

illators when there is one resonance relation of the form p1 + fiz = 8s [l] bet- 
ween the frequencies of three oscillators. This problem was studied by using the 

method of secular perturbations in [S]. 

1. Statement of the problem. We consider a Hamiltonian system of non- 
linearly coupled oscillators with the Hamiltonians 

H (p, q) = Hz @, q) + Hrj @, 9) + *** + Hih 4) + -** (1.1) 

p = (pl, . ..( pn), q = (q11 **‘Y q*) 

Ha@, d-+ fi B, (Q,z + P,2) (B, > 0) 
V=l 

(1.2) 

Here rt @, are the eigenvalues of the linearized system; Hi@, q) are homogeneous 
polynomials of degree i. The quantities B, > 0 corresponding to the frequencies of the 
“uncoupled” oscillators, i. e., to the case when all Hi@, q) = 0 (i > 3) in (1.1) are 
simply called frequencies in what follows. 

let there exist a relation 

k,B, + k&z + . . . + k,Bn = 9 (1.3) 

where the k, are integers. Then we say that resonance occurs. The vector k = (k,, . . . 
. . . . kn) is called the resonance vector, while the number k = 1 kl 1 + . . . -I- 1 k, 1 is called 
the order of the resonance. We consider a system of n oscillators in the case when there 
is only one linearly independent resonance relation (1.3) between the frequencies of the 
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oscillators, which (for an appropriate numbering of the oscillators) we write: 

B1+ Ba = 83 (1.41 

In this case, according to the theorem [S] on the possibility of reducing a Hamiltonian 
system in the case of resonance (1.3) to the simplest, so-called “normal” form, the 

Hamiltonian system (1. l), (1.2) can be reduced by a canonic polynomial change of 
variables (Pv q - 5, n) to the form 

n 

H=-;r:PVp,+2A)/ plpapscos~+R(P~cP) w 

v=l 

f,= Y'2p,sin(P,, q* = ?2p,cos 9, 

Here p,, (pv are canonic polar coordinates; 9 is the “resonance phase”: 

g=cpr+ ‘Pa - ‘ps 
R (p, (p) is of no less than second degree in the variable p 

The Hamiltonian I’ = H - R (p, cp) differing from H by terms of no less than second 

order in the variable p, i.e., by terms of higher than third order in the original variable, 
coincides with the accuracy indicated with the “normal form” of the Hamiltonian. [3,4j, 

Iu what follows we consider a model system with the Hamiltonian 

I’= &3~~,,+2A I/p1p%pacos~ (1.8) 
*=1 

In the variables p, p of the Hamiltonian the form of the system of equations of motion 
is 

dP, ar dcp, ar _=- -=-- 
dt 8qv’ dt @, 

(1.9) 

Let us assume that the constant A in (1.8) is not zero. We remark that since a system 
with Hamiltonian (1.8) is, to within the accuracy indicated, a model system for “all” 
(*) systems of n coupled oscillators with Hamiltonian (1.1). (1.2) and resonance rela- 
tion (1.4) to be considered by us, a study of it enables us to give a motion portrait for 

“all” such systems in one. 
System (1.9) with Hamiltonian (1.8) possesses the following integrals [3, l] 

ka .Ta= pa--- h PI = p;” - PI, Js = PS - ; PI = Pa + PI 

J4 =p4. Jti=ps,..., J,=P, 

Here k, are the components of the n-*dimensional resonance vector k (1, 1, -3, 0, 

..+, U).For system (1.9) there exists further the integral 

F -=L? 2AI/ii&acosII, (l.if) 

The equation for the phases (pj have the form 

4v -=- 
dt BS ti=4, 5,.. ., n) (1.12) 

*) FOP some systems A = 0. The investigation of such systems is simple to carry out with- 
in the accuracy indicated: pi = con&, tpi = v&t + (pia (i = 1, 2, . . . . n). 
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From this and from (l.lO), for these “quasi-oscillators ” (*) we have 

9j - Ji, cpi = -@jt+fP@ (i=a*5***+* n, (1.13) 

where cpja is the initial value of phase ‘pj. Thus, relations (1.13) completely determine 
(in the approximation being considered) the motion of the quasi-oscillators (pi, tpj) - 
(r = 4, 5, . ..) n), which has been “constructed” in the variables oj, ‘pi as the motion of 
a point on a circle of constant radius oi = Jj with a constant angular velocity --pi 
equal to the frequency of the I th oscillator when it is not coupled to the other oscill- 

ators. In the variables pat vPa the study of the motion of the system (1.9) of oscillators 
being considered can be carried on independently for the quasi-oscillators (91, cpr) (i = 
= i, 2, 3) “essentially” coupled by the resonance relation (1.4) (i.e., ki =# 0 ii = 

= 1, 2, 3)) and for the remaining quasi-oscillators @j, cpj) (f = 4, 5, . . . . n), whose motion 
is completely determined by relations (1.13). Therefore, in what follows we shall con- 
sider the motion only of the first three quasi-oscillators (pi, (pi) (i = 1, 2, 3). 

2. Equrtion8 of motlon of “r68onant” orcillrtors, Intsgrrlr, 
Those oscillators whose frequencies enter into the resonance relation (1.4) with a cceff- 
icient k, # 0 are called “resonant” oscillators. (In our case such are the first three 

oscillators, or after passing to the normal form of the Hamiltonian, the first three quasi- 

oscillators (et, rpif (i = 1, 2, 3)). It is convenient to rewrite the integrals (1.10) relating 

to these three quasi-oscillators in the following form, introducing a new notation for the 
integrals : 

PI+ pa = J, = 11, pa + p3 = Jz + Ja IS I, (2.1) 

We write out the equation for 93 , 

dP3 X=2A~~sin$ (2.@ 

If an expression for sin 9 is obtained with the aid of integral F in (1. ll), while pt 
and 9s are expressed in terms of p3 with the aid of integrals (2.1). and if these expre- 
ssions are substituted into (z&Z). then for p3 we obtain the following autonomous equa- 

tion: 
‘$ = f 2A r/h-(1, - ~3) (1.3 - ~3) - P1’ (F1 =;: F/2A) (2.31 

The investigation of this equation permits us to obtain a qualitative picture of the poss- 
ible motions for various initial conditions. Equation (2.3) can be integrated directly for 
actual values of the initial conditions. The quantities p1 and fi are obtained then from 
the integrals iI and I, in (2.1). The magnitudes of the phases ‘pI, fp3+ ‘p3 are obtained 
after this by quadratures from the equations for the phases and, moreover. using integral 
F, these equations can be written as follows: 

a(pl=_s 
dt %I 

= - (61 + .4 l/l).lfwfJ, cos $) = - 

cicpi =Li _ 

Jt (@ii- &j (i = ‘,3) 
(2.4) 

*) The pair of variables (p,, g),) is here called a “quasi-oscillator”. 
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Hence, among other things, we see that the rate of change of the phase cpi (f = 1, 2,3) 
depends only on its “own” variable Pi, i.e. after the value of. Pi has been obtained, the 
equation for Q can be integrated independently of the other values of P,, cptt (a # i). 

3. “Phate picture” of the cyatem in the ca$a~ I,#I~. We go on to 
the investigation of Eq. (2.3). We denote the radicand by @ (pa; F,), i.e., 

@ (p3; F,) = PI3 (11 - P3) u* - Ps) - Fia (3.1) 

We investigate this function for fixed values of integrals 1, and 1s depending on the 
value of integral F1. We first con- 

sider the more general case when 

I, # Is and, for definiteness, we 

Fig. I. 

(Note that because the Pi are non- 
negative, the integrals I,, rs > 0.) 

From expressions (2.1). (3.2) and 
from the nonnegativeness of the 

Pi it follows that during the whole 
time of motion, 

PI @f Q 11, pa (t) g la, 

Pa f t) f 11 (3.31 
The very writing of the cubic polynomial d> (ps; FJeasily enables us to represent it in 

the form of function (3.1) for Fr = 0 (curve I in Fig. 1 a} and consequently, for F, # 
# 0, since curve I in Fig. 1 a simply drops by the amount F,Y. It is not difficult to 

show that for all possible values of integral Fl the functions 4, (ps; F,)have a maximum 
at the point 

ps* = 1/B [ I1 + I‘2 - 1/(11+ Ia)2 - 311121 (3.4) 

Were pa* is that root of the equation Q’ (p3; !+‘,) = Owhich lies in the region of possible 

motions 0 6 p3 f 1,. We note also that Qt (p I*r F,) vanishes when 1 cos 9 1 = l,or, in 
other words,for the largest possible value of the integral F,s, equal to 

(Fls)* = (II - P&*1 Gz - p3*) Fs+ (3.5) 

The form of the curves of @ (pa; F& for fixed values of integrals I, and I, and for 
various possible values of integral F1 are shown in Fig. 1 a. Curve I is obtained for 
F, = 0, curve 4> for when F,s reaches value (3.5). The remaining curves correspond 
to intermediate values of integral 17,. The corresponding curves on the phase plane 
033, Pa ) are shown in Fig. 1 b. There is one singular point 

Pa = Ps’, ps’ = 0 (3.6) 

where pa* is determined by expression (3.4). Integral curves not passing through this 
singular point are cycles intersecting the Ps -axis at right angle. 

For all possible initial values, except t&n = @* and simultaneously 1 ~0s $. 1 = 1, there 
occurs a periodic variation of ps (and, consequently, from integrals 1, and fs, a peri- 
odic variation of Pr and pa) which, by taking into accuunt that in the first approxim- 
ation pi is proportional (with coefficient pi) to the energy of the i th oscillator and 
by following the terminology in (5], is called the pumping of energy between the 
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oscillators, The pumping takes place with a period 

Z= 
s6 

ltpl 

2x4 T/P3 (11 - Pa) (la - P3) - F2 

(3.7) 

where the integral is taken along the cycle corresponding to the initial values being 
considered. Thus, for initial values other than singular point (3.6). there arises a period- 

ic variation of p3 between pai and p32. The values Psi and pSS are the roots of the equ- 

ation @ (Ps; FL) = ‘0, lying on the segment 0 < p3 < f,.The more the value of the int- 
egral pi2 differs from its largest possible value (3.5) the greater the limits within which 

the quantity I.% (consequently, pi and pnJ varies and the “deeper” [5] the pumping of 
the energy. 

In the case 1, < 1, the curve I in Fig, I b corresponds to a periodic pumping mode 
of the energy and, moreover, on this curve there takes place a “complete” pumping of 
energy between the third and the other two oscillators, i.e. , p3 oscillated periodically 
between the values pa = 6 and P3 = I,. Here pi oscillates periodically between p1 E 1, 

and p1 = 0, while PZ oscillates periodically between the values 1, and (1, - I&The 
period of these oscillations is given by formula (3. ‘7) if as the cycle we take curve I of 

Fig. 1 b. and take into account that here F, = U, i.e., 

Ir 

Z= C- &a 
,t A ~p*(l1-- p3)(I2 - p3) 
0 

This quantity is finite if 1, # 1, We remark that the motion of the system being consid- 
ered takes place in such a way that when ps takes a maximal (or a minimal) value the 

quantities PI and Ps simultaneously take minimal (or maximal) values. respectively. 

4. “Phrts portraft” in the caac ri = I, This case is of interest in that a 

limit mode arises. The equation for P3 takes the form 

The form of the curves 
ps’ = & 2‘4 VP3 (11 - P3)Z - FIZ (4.1) 

f4.2) 

is shown in Fig. lc. Curve I of Fig. lc corresponding to the case F, = 0, is tangent to 
the P3-axis at the point pS = I;-The function CD (pS; 8’J reaches a maximum at the 
point 

p3 = pa* = rz I3 (4.3) 

on the considered interval 0 < p3 < I, for any possible value of F1. 
For the maximal value of 

Ft = ps'(Za-- ps*y =‘/m 118 

the curve of CR (pn; I;,) has the form of curve 4 in Fig. 1 c. The remaining curves in 
Fig. 1 c correspond to intermediate values of Fr a* The corresponding curves on the phase 
plane (p3, pa ) are shown in Fig. 1 d. In the case being considered there are two singular 
points: 

ps = pt* = ‘ISZl, pj = 0 (4.4) 

pa = Zl, Pa =o 
(4.5) 

The basic qualitative difference between Fig. 1 d and Fig. 1 b, which latter corresponds 
to the case I, < I,. is the appearance of the singular point f&5) and, correspondingly, 
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of a separatrix (curve I in Fig. 1 d). All curyes on the phase plane, not passing through 
the singular points, are cycles (Fig. 1 d). These cycles correspond to a periodic pump- 
ing of energy between the oscillators, with a period 

SC= 
4’s 

2A f/c& - PJ)* - ‘la 

For the initial values corresponding to the separatrix (Fs = 0) there arises a limit 
motion. The representative point (Fig. 1 d) takes infinite time to go into the point f4.5): 
for F1 = 0 integral (4.6) has a singularity at the pointps = I1 and diverges. Thus, the 
separatrix corresponds, in our case of X1 = Is to the mode of complete pumping (“trans- 
mission”) of the energy of the two quasi-oscillators (PI+ Cpr) and (ps, cpa) into the “fast” 
quasi-oscillator (Ps, (p3) (recall that p3 = p1 + p3). This pump&g lasts infinitely long. 

6, Periodic motions, A periodic motion of the oscillators occurs for initial 
values corresponding to a center-type singular point, both in the case I, < 1s as well 
as in the case I, = I,. We first consider the periodic motion in the case 1, < Is. 

At a center-type point (ps = p3*, p3 = 0) the value P3* is given by expression (3.4) 
and the value of the resonance phase g is such that @OS -+,I = 1; therefore, from Eqs. 
(2.4) we see that 

dqaIdt=- (aa f A VcPlfPt3 I Pa‘) (5.1) 
p1* = II--Ps', p2* = I2 -ppJ* 

The sign in front of A is chosen depending on the sign of cos 9 (equal, in our case, to 
+I or -1). Analogous equations for ‘pr and c~s are easily obtained from (2.4). Thus, to 
a center-type point there correspond two types of periodic motions: 

PI (4 = Pl*, 

PL (t) = pa+, 

.Pr@) = P3*, 

rpl (Cl = - @I rfr: A ~PS*PS* / PI’) t + cpio 

w (0 = - (Pz & A v-Pl’Ps* /Pa’) c + ‘paa 

qa (t) = - (BP f A ~PI*P~*/P@) t + ww 

(5.2) 

Here qlo -I- vao - qae = q0 and, moreover. COS$, r 1 for the first type of periodic 
motion and eds q,, = -1 for the second type. The motion of the representative point 
in the coordinates (Pslcps) is the motion of a point on a circle of radius pa = pa* with 
constant angular velocity - (pa+ A ~pa*p3*/pl* ) for one type of periodic motion and 
angular velocity _ (ps _ A I/P&~*@*) for the other type. An analogous portrait exists 
in the planes (pl , qq, (pz, r&. Note that the frequencies in the two different types of 
motion being considered is in one case larger, and in the other case smaller, than the 
natural frequency of the corresponding oscillator. In these periodic motions the nonlinear 
coupling between the oscillators manifests itself in the alteration in the frequency of 
their oscillations, whereas the quantities pi = Pi* (i = 1, 2, 3) are preserved, i.e., there 
is no pumping of energy. 

In the case I, = Z, the frequencies of the periodic motions corresponding to a center 
are simpler in form and, therefore, the periodic solutions (5.2) take the simpler form 

Pl ($1 = */+a f 1, q%(t) = - (&+A )"ls~+3-10 

PI(t) = %/a fr, (p%(t) - - (PzfA F'%%t++m (5.3) 

Ps (l) = l/s 11, q%(t) 1 - (3a+2A y’y)t+atsn 
'PlO + %?o - %o = *ot cosg, = +l or -1 
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For small deviations from the initial conditions corresponding to a center, both in the 
case 1, < la (Fig. 1 b) as well as in the case I, = 1% (Fig. 1 d). the representative point 
describes small circles around the center, i. e, , the quantities pi (i = i, 2, 3) perform 
small periodic oscillations around pi*. In the case I, = 1, a periodic motion corresponds 

also to the singular point (p3 = I,, p3’ = 0) for which only the one “fast” quasi-oscillator 

p3 = 11, 03 Of = -P3t + 930 

“moves”. However, the nature of this periodic motion is such that for the least change 
in the initial conditions the representative point (Fig. 1 d) starts to move along a cycle 

close to the separatrix, which corresponds to a “slow” pumping of energy between the 

oscillators* 

The author thanks V.V. Rumiantsev and L.G. Khazin for attention to the work and 
for useful discussions. The author takes this opportunity to thank V. I. Arnol’d for draw- 

ing the author’s attention to Ref. [Sj. 

BIBLIOGRAPHY 

1. Khazin, L, G. and Tsel’man, F, Kh., On the nonlinear interactionof 

resonant oscillators. Dokl. Akad. Nauk SSSR Vol. 193, Np2, 1970, 

2. Tsel’man, F. Kh,, On pum~ng transfer of energy between non~nearly-~upled 
oscillators in third-order resonance. PMM Vol. 34, Np5, 1970. 

3. Moser, J., Lectures on Hamiltonian Systems. Memoirs Amer, Math. Sot. 

N%l, 1968, 
4, Briuno, A. I),, Normal form of differential equations. Dokl, Akad. Nauk SSSR 

Vol.157, NQ6, 1964. 
5. Vitt, A. and Gorelik. G., Oscillations of an elastic pendulum as an example 

of the oscillations of two ~rame~ical~-~upled linear systems. Zh, Tekhu. 

Fiz. Vol. 3, I% 2, 3, 1933. 

6. Mettler, E., Kleine Schwinguugen und Methode der siikularen St&ungen. Z. 

Angew. Math. Mech. VoI.43, Special Issue, pp. T81-T85, 1963. 

Translated by N. H. C w 

ON THR ELATION BRTWXEN RADIAL AND VSRTfCAL FICTIONS 

OF PARTICLW IN CYCLOTRONS 

PMM Vol. 35, Np6, 1971, pp.1096-1100 
V. M. ST~ZHI~K~ 

(Moscow) 
(Received December 29, 1969) 

We consider the betatron oscillations of particles in cyclotrons with weak focus- 
ing. The equations of motion of the particles are described in the form of a 
fourth-order Liapunov system [1, 27. On the basis of a transformation of Liapu- 
nov systems, proposed by the author [3, 43, the equations of motion are reduced 
to a second-order nonauto~mo~ equation containing a smalI parameter. The 
vertical-radial oscillations of the particles are determined with the aid of the 


